If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+3=3^2
We move all terms to the left:
z^2+3-(3^2)=0
We add all the numbers together, and all the variables
z^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $
| 5+6x=-3x+11 | | 12=15(z)-15(1/5) | | 4x+24=20x-60 | | 10m^2-25m+10=0 | | 1x-61=4 | | 18-r=-7(-8-6r)-5r | | -12x+144=72 | | 5x-15=2x+16 | | -16+4=-(x+9) | | 12/z=56 | | t+35=615 | | T(h)=76 | | -11j-6=3j=-30 | | 7x+3(x-2)=12 | | (4/7)(x+(1/3))=(1/7)(x-(3/5)) | | r^2+6r+17=8 | | 2=u/5+3 | | -5x+2=10-9- | | 7x+5(x-2)=12 | | 1x=4(7-x) | | 6x+7=7x-6 | | 5-x=1/4(3-x) | | 2(a-)-(3a+1)=0 | | ½(4x–5)=8x+10+2x | | -6v(v+4)=-8v-20 | | 26x=-806 | | x13+4x=22 | | 6x+7=7x-9 | | -15x-1=11 | | -2(6u-8)+u=3(u+6) | | 3.4x+100=11.56+10x | | -245=x+-376 |